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Abstract 
People with disabilities represent linguistically diverse communi-
ties. For example, among Deaf and Hard of Hearing (DHH) people, 
many of whom use sign language as their primary language, there 
is significant variation in written language literacy, highlighting 
that some might benefit from reading comprehension support tools. 
Prior research has demonstrated the benefits of lexical and syntactic 
approaches to Automatic Text Simplification for DHH readers and 
explored design considerations. Building on this work, we present 
a fully automatic, GPT-based text comprehension tool that provides 
in-situ reading support. The tool, released with this demo paper, is 
easily customizable and adaptable to support a range of disability 
communities and literacy levels. We present usage scenarios to 
spark conversations around broader applicability, personalization 
needs, and future studies comparing in-situ reading support to 
chatbot-style GPT interfaces. 

CCS Concepts 
• Human-centered computing → Accessibility technologies; Em-
pirical studies in accessibility; Accessibility systems and 
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1 Introduction and Related Work 
Automatic Text Simplification (ATS) encompasses a range of nat-
ural language processing (NLP) techniques aimed at reducing the 
linguistic complexity of text while preserving its meaning [2]. Over 
the past two decades, ATS has shown promise in supporting a wide 
range of reader populations, including people with dyslexia [30], 
aphasia [24], and autism [39], as well as Deaf and Hard of Hearing 
(DHH) people [4, 20], second-language learners [28], and children 
[29, 35]. Across these groups, unique challenges with decoding com-
plex vocabulary and sentence structures can impact comprehension 
and engagement with written content in educational, professional, 
and everyday contexts [5, 13]. 

For DHH readers—many of whom use sign language as their 
primary language—there is significant variation in English literacy 
skills. In the U.S., over 17% of DHH adults have low literacy, with 
some studies reporting that some high school graduates may read 
at a fourth-grade level [36]. Prior research has demonstrated the 
benefits of both lexical (word-level) [9] and syntactic (sentence-
level) [11] simplification strategies, often leading to improved com-
prehension and reading confidence for DHH readers. However, 
these studies have typically relied on Wizard-of-Oz [10] or semi-
automatic research prototypes [7], with limited exploration of fully 
automated, real-time systems that adapt to users’ specific needs 
and contexts. 

Research on accessible technology design emphasizes the impor-
tance of user control, visual presentation, and interaction modality 
[14, 19]. In web-based reading support technologies, features such 
as pop-up word explanations, in-place sentence rewrites, and user-
invoked simplifications ensure that the reading support technology 
is useful without being intrusive. One recent work by Alonzo et al. 
[7] introduced a semi-automatic prototype1 powered by lexical 
and syntactic models fine-tuned on specialized corpora such as 
the BiSECT dataset [22]. With the advent of powerful and widely 

1Source code for the original automatic text simplification prototype: https://github. 
com/oliveralonzo/ats-prototype 
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available large language models (LLMs)—such as OpenAI’s Gen-
erative Pre-trained Transformers (GPT) [1]—fully automatic and 
easily integrated reading support tools are now feasible. 

In this demonstration paper, we present and release a fully auto-
matic, AI-powered text comprehension tool that offers customizable, 
in-situ reading support. Our system builds on the design of the pre-
viously released research prototype [7] by integrating GPT-4 to 
deliver real-time simplification support. We release the codebase as 
supplementary material with this submission and can be accessed 
on GitHub: https://github.com/TITHI-KHAN/ATS-GPT. 

To demonstrate the customizability and extensibility of this auto-
matic tool, we introduce a feature that tailors simplification output 
based on user-specified literacy levels, and we document how this 
customization can be implemented in the codebase. We conclude 
with example use cases and a discussion of future research direc-
tions, such as expanding support to additional communities and 
comparing in-situ interfaces with chatbot-style alternatives. 

2 Automatic Text Simplification Tool 
We built on top of the prototype developed by Alonzo et al. [7], a 
semi-automatic, customizable reading assistance tool designed as a 
research instrument to explore the design space of reading support 
tools through structured usability testing with DHH participants. 
Implemented as a web browser extension using HTML, CSS, and 
JavaScript, the tool identifies sentences and makes API calls to a 
local server to retrieve simplified versions from a pre-populated 
database. It also highlights complex words and sentences, with 
available replacements, to enable interactive simplification. Users 
can request lexical (word-level), syntactic (sentence-level), or 
hybrid (a combination of both) simplifications. The tool was de-
signed to explore the design space of the tool. It thus allows users to 
select options for various design parameters including the amount 
of text to modify at a time, whether the complex and simplified texts 
are highlighted, and the location and duration of simplifications. 
More details about the design and implementation can be found in 
the original paper [7]. 

Since the original prototype was designed as a research instru-
ment for controlled studies, it made sense to pre-generate complex 
word identifications and sentence simplifications. In our system, 
we replaced the API calls to a local server with OpenAI’s GPT API 
[25]. We chose the GPT API due to its high adaptability, which 
allows for straightforward customization through prompt design 
or even the integration of additional data within the prompt. At the 
time of implementation, we used GPT-4, though this can easily be 
modified, e.g., via the “Playground” section of the API platform. 

Some research shows that LLMs like GPT-3.5 and GPT-4 can pro-
duce significantly better simplification outcomes when guided by 
carefully crafted prompts [16, 21]. For example, including explicit 
instructions (e.g., “replace complex words with simpler synonyms,” 
“split long sentences into shorter ones”) and structured example pairs 
(e.g., “Complex: ... Simple: ...) improves meaning preservation and 
fluency [12, 21]. Kew et al. [21] found that detailed prompts yielded 
higher simplicity and preservation scores than generic ones. With 
well-designed instructions and few-shot examples, GPT-based sys-
tems have even matched or outperformed specialized ATS models 

on standard benchmarks [12, 37]. This literature informed the con-
struction of our prompts. However, some studies also note that 
even advanced models like GPT-4 occasionally struggle with lexical 
paraphrasing—failing to simplify specific terms or jargon—which 
underscores the need for more contextual information or additional 
finetuning [38]. We leave the experimentation with different prompt 
performances to future work. 

Upon activating the prototype, text from the current web inter-
face is sent to a Flask-based API connected to GPT. We chose to 
send the entire text and use a single prompt to retrieve all three 
forms of simplifications supported by our system, as the latency of 
individual API calls would not justify making separate requests for 
each user selection or word/sentence to simplify. A single prompt is 
issued for the entire page to perform four tasks: (1) identify complex 
words and generate synonyms, (2) generate a lexical simplifica-
tion (word-level replacements), (3) produce a syntactic simplifica-
tion (sentence restructuring), and (4) create a hybrid simplification 
that combines both strategies. The system returns a structured 
JSON output with four keys: lexical, syntactic, hybrid, and words (a 
mapping of complex to simpler terms). Basic error handling is in-
cluded. Figure 1 illustrates the system workflow for browser-based 
automatic text simplification. A sample prompt and output format 
within a code snippet are also provided in Appendix A. Both the 
prompts and output structure are easily customizable. 

3 How Can Researchers Make Use of this Tool? 
3.1 Adding New Customization Features 
The customization of the tool enabled exploration of design space 
of the prototype was explored with DHH adults using a structured 
usability-testing method [7]. Even after integration with the GPT 
API, the tool remains highly customizable. Thanks to this integra-
tion, however, researchers may now easily add new features or 
modify existing ones within the codebase. To demonstrate this, we 
added a feature that allows users to adapt the output to different lit-
eracy levels. Users can select a grade level from Elementary, High 
School, or College, based on their reading ability. This function-
ality was implemented by creating three prompt templates tailored 
to each literacy level for identifying complex words and generating 
simplifications. The underlying prompts included additional tex-
tual cues based on the best practices listed in section 2, which can 
be modified. For example, the Elementary version uses simplified 
vocabulary and appends clarifying phrases, such as “short, easy to 
read sentences” and “words an elementary student would know” to 
the prompts. The High School version balances clarity with light 
academic phrasing, appending short phrases to the prompts like 
“familiar to a high school reader” and “conversational language.” The 
College version allows some complex words to remain in order 
to maintain “semantic integrity” and “domain-specific vocabulary.” 
Figure 2 illustrates the automatic text simplification tool with all 
the parameter settings (including this newly added feature). 

Since the underlying model does not rely on a specific training 
corpus, researchers can experiment with different G PT prompt 
strategies or allow users to define their own. In addition, they could 
incorporate corpora collected from specific communities to further 
tailor the prompts and outputs, such as the recent dataset on word 
complexity from DHH annotators [8]. 

https://github.com/TITHI-KHAN/ATS-GPT
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Figure 1: Schematic illustrating the system design with its components. Text is read from the webpage and sent along with 
simplification prompts to the GPT-4 API. The output is stored in a JSON file and rendered on-demand based on the format 
requested by the user. 

Figure 2: Interface of the web extension with the new customization feature to modify prompts used for identifying complex 
words and generating simplifications based on different grade levels. 

3.2 Research with Other Communities 
While the text simplification tool was designed with DHH readers in 
mind [6], this demonstration introduces a prompt-based approach 
with GPT-4 integration that offers a platform for the researchers to 
explore new customization strategies, compare interface paradigms, 
and adapt the tool for other communities. For example, people 
with dyslexia may benefit from sentence-level rewrites that reduce 
cognitive load [30], while second-language learners might prefer 
inline definitions or vocabulary scaffolding [27]. Readers with apha-
sia or autism may also benefit from syntactic simplifications that 
minimize ambiguity and cognitive demand [15, 23]. Because the 
system allows users or researchers to tailor prompt strategies and 
simplification levels, it can be adapted to support different popu-
lations and opens opportunities for participatory customization. 

A slightly more time-consuming modification would be adjusting 
the typographic parameters and visual parameters, e.g., (color and 
line spacing), which are known to improve readability for different 
communities [18, 31–33]. We hope that our demo will spark con-
versations among researchers working with different communities 
regarding customization. 

Our modular codebase separates user settings, prompt construc-
tion, and interface rendering into distinct components. Simplifica-
tion is driven by prompts that are generated based on user-selected 
parameters and sent through an API call. This architecture could 
potentially enable the researchers to experiment with the tool as a 
reference or guideline for different target audiences such as non-
native speakers [26] or people with cognitive disabilities [34]. 
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3.3 In-situ vs. Chatbot-style Interfaces 
Our system can also be used to investigate the distinct benefits and 
drawbacks of in-situ versus chatbot-style interfaces (popularized by 
leading AI chatbots, e.g., ChatGPT, Gemini) for reading support [1]. 
In-situ reading support embeds assistance directly into the read-
ing environment and offers benefits such as highlighting complex 
words, providing on-demand synonyms or rephrasings, and main-
taining the user’s reading flow [3, 4, 7, 17]. In some contexts, it may 
be preferred because it preserves context, supports autonomy, and 
allows more granular, on-demand ATS [9, 10]. However, in-situ de-
signs must avoid visual clutter and ensure high accuracy, as errors 
are immediately visible and can undermine trust [11, 27]. In-situ 
changes may also add reading time when the interface does not 
support efficient comparison between the original and simplified 
texts [7]. 

In contrast, chatbot-style interfaces offer personalized, conver-
sational assistance that can adapt explanations over multiple “con-
versational turns” and provide deeper clarification, which can be 
especially valuable for users engaging with technical or unfamiliar 
material [1, 2]. Yet, they may disrupt reading flow, require more 
interactions for comparison, and require users to formulate queries, 
which can be an added barrier for those with low English literacy. 
They may also introduce risks of AI inaccuracy or hallucination 
[1, 22]. 

By evaluating how people with disabilities interact with each de-
sign paradigm, researchers can help illuminate how design choices 
impact readability, comprehension, user control, and trust in AI-
driven reading support technologies. 

4 Conclusion 
We release a fully automatic GPT-based ATS system for in-situ 
reading support and demonstrate how it can be customized for 
users with different English literacy levels. We hope to spark con-
versations with researchers working with diverse reading disability 
groups and those exploring empirical questions, such as comparing 
in-situ and chatbot-style support. 
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A Code Snippet with Prompt 

Listing 1: A code snippet showing one of the example 
prompts used in our codebase for text simplification using 
GPT and receiving the output. 
def generate_simplifications(self , text): 

try: 
instruction = f""" 
For the given sentence: "{text}", perform the 

following tasks: 
1. Identify all complex or uncommon words and 

list simpler synonyms. Focus on words that a 
general reader or non -native speaker might 

find difficult , and ensure the suggested 
synonyms preserve the original meaning. 

2. Rewrite using simpler vocabulary. Replace 
complex or rare terms with more common 
synonyms while keeping the meaning unchanged 
. Simplify as many words as possible , 
ensuring the sentence remains grammatically 
correct and semantically accurate. 

3. Paraphrase in simpler , more straightforward 
language. Use clear , everyday wording 
without omitting important details. The 
meaning should remain exactly the same , 
expressed in accessible terms. 

4. Rewrite with simpler syntax. Break down long 
or complex sentence structures into shorter , 
clearer ones while preserving the original 

meaning. 

5. Simplify both vocabulary and sentence 
structure. Replace difficult words with 
easier synonyms and split up complex 
constructions if needed. Ensure the result 
is fluent , easy to read , and faithful to the 
original meaning. 

Format: 
"{text }": { 

"lexical ": "...", 
"words": { 

"complex_word1 ": "simple_word1", 
"complex_word2 ": "simple_word2" 

}, 
"syntactic ": "...", 
"hybrid ": "..." 

} 
""" 
response = client.chat.completions.create( 

model="gpt -4", 
messages =[ 

{"role": "system", "content": "Simplify␣ 
complex␣sentences."}, 

{"role": "user", "content": instruction} 
] 

) 
simplified_text = response.choices [0]. message. 

content 
return self.clean_json_string(simplified_text) 

except Exception as e: 
print(f"Error␣while␣calling␣OpenAI␣API:␣{e}") 
return None 
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