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Abstract

Progress in machine understanding of sign languages has
been slow and hampered by limited data. In this paper,
we present FSboard, an American Sign Language finger-
spelling dataset situated in a mobile text entry use case,
collected from 147 paid and consenting Deaf signers using
Pixel 4A selfie cameras in a variety of environments. Fin-
gerspelling recognition is an incomplete solution that com-
prises only a small part of sign language translation, but
it could provide some immediate benefit to Deaf/Hard of
Hearing signers while more broadly capable technology de-
velops. At >3 million characters in length and >250 hours
in duration, FSboard is the largest fingerspelling recogni-
tion dataset to date by a factor of >10x. As a simple base-
line, we finetune 30 Hz MediaPipe Holistic landmark inputs
into ByT5-Small and achieve 11.1% Character Error Rate
(CER) on a test set with unique phrases and signers. This
quality degrades gracefully when decreasing frame rate and
excluding face/body landmarks—plausible optimizations to
help with on-device performance—but falls short of human
performance measured at 2.2% CER.1

1. Introduction
The quality of sign language translation, particularly from
American Sign Language (ASL) to English, has been
steadily improving [14, 47, 53, 54], but it is still far from
being usable in practice. A body of work on participatory
methods for ML [9, 11] suggests dividing such an ambitious
goal into intermediate milestones that can provide concrete
and immediate benefit to the community (i.e., to Deaf/Hard
of Hearing signers). In this manner, the work starts address-
ing the community’s needs immediately, and the commu-
nity can drive the direction of future technology.

∗equal contribution † equal advising ‡ work conducted at Google
1We publicly release FSboard at under CC BY 4.0.

We focus on the intermediate goal of recognizing finger-
spelling as an alternative to smartphone text entry. While
full signing for text entry (the proper analogue of speech
recognition) is ideal [24], fingerspelling may still be a valu-
able stopgap due to improved speed or convenience vs. typ-
ing on a keyboard. An analogy can be made to gesture key-
boards [57], where the user swipes through the letters of a
word as opposed to touching and releasing each letter’s vir-
tual key. Even though the system uses pattern recognition
to determine which word the typist intended and sometimes
returns an incorrect word, many smartphone users prefer
such gesture-based keyboards as they feel they can enter
text more quickly with the added benefit of requiring one
hand instead of two [46]. Similarly, there is evidence that
Deaf signers may find fingerspelling faster or more conve-
nient than current smartphone text entry keyboards [24].

In this paper we present FSboard (Fingerspelling-board,
as in “keyboard”), an ASL fingerspelling dataset situated in
a mobile text entry use case. We collect FSboard by creat-
ing a domain-appropriate phrase distribution, recruiting 147
paid and consenting Deaf signers through the Deaf Profes-
sional Arts Network (DPAN), and having them record one-
handed fingerspelled renditions of the phrases using Pixel
4A selfie cameras in a variety of environments. The videos
were usually recorded at 1944x2592 pixels and 30 frames
per second, though sometimes the resolution varied due to
participants accidentally changing settings. At 3.2 million
characters in length and 266 hours in duration, FSboard is
the largest fingerspelling recognition dataset to date by a
factor of >10x.

As a simple model baseline, we finetune 30 Hz Me-
diaPipe Holistic landmark [18] inputs into ByT5-Small
(300M) [55] and achieve 11.1% Character Error Rate
(CER) on FSboard’s test set, which features 15 unique
signers and no train phrase overlap. We ablate our base-
line across several factors like frame rate and exclusion
of face/body landmarks which could be used to optimize
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MediaPipe Holistic’s on-device performance, and find that
these compromises (in moderation) cause minimal regres-
sions. However, these results fall short of our measure-
ment of human performance at 2.2% CER. Qualitatively,
the baseline outputs are promising but should be evaluated
end-to-end in realistic settings in future work as results im-
prove.

We hope that FSboard will help develop text entry meth-
ods that start to give signers a more equitable experience
with technology, as well as aid in longer term research to-
wards full sign language understanding.

2. Background
According to the United Nations and the World Health Or-
ganization, there are over 70 million Deaf and Hard of Hear-
ing people in the world [1, 2]. Many use one or more of
around 150 sign languages to communicate [16]. For ex-
ample, American Sign Language (ASL) is used by about
500,000 people as a primary language in United States
alone [35].

Sign languages are complete, natural languages that can
differ from one another significantly even across societies
where the same spoken language is used [4, 16]. For ex-
ample, American Sign Language differs from British Sign
Language (BSL) significantly and is instead genetically re-
lated to French Sign Language [4]. However, almost all sign
languages include a manual alphabet used to represent let-
ters as hand shapes and movements. Often, fingerspelling
is used for proper nouns or when introducing new concepts.
Fingerspelled terms may also be adapted into the closed vo-
cabulary of a sign language in a process called lexicaliza-
tion [28, 56]. For example, the sign for “job” in ASL can
be seen as a combination of the letters J and B, with the O
abbreviated or elided, but the B is in a different orientation
from typical fingerspelling. The amount of fingerspelling
used in conversational discourse varies depending on the
sign language. In ASL, fingerspelling is about 12%-35% of
signing [29, 40].

Some fingerspelling systems are one-handed, such as
ASL or Japanese Sign Language (JSL), while others, such
as BSL, are two-handed [43]. Even though meanings may
be different, similar hand shapes and movements can be
seen across sign languages due to the physical constraints of
the hand [34], which suggests that datasets collected for one
sign language may offer some transfer to others, or to recog-
nizing handshapes and movements in signing more broadly.
This benefit may be especially true for ASL fingerspelling,
which belongs to the largest cluster of manual alphabets, the
“French-origin group” [43]. For example, many of the let-
ters in the ASL manual alphabet have the same handshape
in French, Italian, and German Sign Languages.

There are many works, both informal and academic,
which claim to study fingerspelling recognition for ASL and

other sign languages but operate on single images. Such ef-
forts are in reality studying handshape classification, with
exceptions for fingerspelled letters such as J and Z that in-
corporate movement. Ghanem et al. [17] provide a survey.
Real-time demonstrations are often slow, with feedback on
one letter at a time. These systems ignore the co-articulation
effects that occur when recognizing fingerspelling at speed
as well as the problem of determining where the space is
between two fingerspelled words. In addition, when finger-
spelling at speed signers often “bounce” or “slide” a hand-
shape from inside to outside the body when a letter repeats
in a word. We are only aware of the ChicagoFS series of
datasets [6, 7, 30] that are directly comparable to the ef-
fort here for American Sign Language fingerspelling; we
provide a detailed comparison to ChicagoFS in Section 3.4
below.

2.1. Fingerspelling for smartphone text entry

Historically, most sign language recognition systems have
had little usefulness or usability for the Deaf commu-
nity [9, 10, 15, 25]. Often the Deaf community is not con-
sulted on the technology being created, nor formative or
summative user studies performed. For this work, three of
the authors are members of the Deaf community and were
integral to the selection of the task, pilot studies and testing,
and recruitment of the participants whose primary language
is ASL.

Our efforts to create a fingerspelling dataset are mo-
tivated by Hassan et al. [24], a user study which estab-
lished the potential benefits of text entry for smartphones
based on fingerspelling. It compared an emulated finger-
spelling keyboard to normal smartphone typing on Gboard
(Android’s default keyboard) for 12 Deaf participants and
found that fingerspelling was faster than the smartphone
keyboard (42.5 wpm vs. 31.9 wpm), had fewer errors (4.0%
vs. 6.3%) and had higher throughput (14.2 bits/second vs.
10.9 bits/second). In post-study surveys, 50% of these Deaf
participants preferred fingerspelling for text entry using the
emulated recognition system.

Further adding support that fingerspelling may prove
faster than smartphone virtual keyboards, we examined
common MacKenzie phrases fingerspelled in the FSboard
dataset presented below. Signers averaged around 65 wpm,
with some maintaining over 100 wpm. This result is signif-
icantly faster than the average smartphone typist at around
36 wpm [41] and is consistent with the conversational fin-
gerspelling rates reported in the literature [44].

Texting is often the first use case that comes to mind
when thinking about text entry on a smartphone. However,
members of the Deaf community have emphasized that fin-
gerspelling to a smartphone may be best suited for entering
names or addresses into specific smartphone applications
like Google Maps. One can imagine a Deaf signer setting
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Figure 1. A sample of frames from FS-
board. Faces blurred here but not in the
dataset.

MacKenzie [33] prevailing wind from the east
elephants are afraid of mice
my favorite place to visit

URLs http://datastudio.google.com
si.wikipedia.org
/dfinance/list.asp?id=418/

Addresses 9841 gritt hill
200ab lake charles
24 north 118th place

Phone Numbers 166-893-6320
+44-527-848-96-69-05
+678-92-00-9661

Names mohammed kim
gustavo ho
clifford davenport

Figure 2. A sample of phrases from each category of FSboard. Addresses, phone
numbers, and names are generated randomly; they are not real personally identifiable
information (PII).

their default keyboard on their smartphone to one that shows
both the on-screen keyboard as well as a selfie camera feed
that could be used for fingerspelling. In this manner, the
signer could easily switch between, or combine, input meth-
ods for all applications that require text entry.

2.2. Community-centered sign language datasets
PopSign and ASL Citizen are two prior works grounded in
focused tasks that could benefit signing communities. Both
are isolated sign recognition tasks (classifying which single
sign is present in a given clip). PopSign [50] is an edu-
cational smartphone game intended to help hearing parents
of deaf infants practice sign language (and avoid language
deprivation [19–23, 26, 27, 38]).

In the game, the user signs one of five options to select
a bubble of a particular color, and these five active options
rotate among a library of 250 signs in a way that avoids rec-
ognizer confusion. Limiting the number of classes ensures
>99% top-1 accuracy [8]. As with FSboard, the PopSign
dataset is collected at high resolution (1944x2592) using
Pixel 4A smartphone selfie cameras. The PopSign dataset
includes over 200,000 clips and 128 hours of video.

ASL Citizen [13] grounds the sign recognition task in
a dictionary retrieval setting, enabling signers to record a
video clip of a sign to retrieve its dictionary entry. This task
demands a much larger sign vocabulary/number of classes,
but retrieval is relatively forgiving because a number of out-
puts can be returned (i.e., top-N accuracy) from which the
user can choose. The authors report a top-1 accuracy of
63% but a top-10 accuracy of 90% on a 2731 sign vocab-

ulary. The dataset contains 83,912 videos taken from web-
cams, and the dataset resolution is often 640x480.

3. The FSboard Dataset
In this section we describe the set of phrases we elicited for
FSboard and how the data was collected.

3.1. Phrases
Numbers should not necessarily be considered finger-
spelling, but they are relatively formulaic and often appear
in the same contexts as/alongside fingerspelling. There are
special signs for various numbers (such as 11, 12, 23, 25,
33, and many more) and specific movements which are gen-
erally used while signing numbers, but for practical pur-
poses, the systems for signing cardinal numbers and finger-
spelling words are very related, so we choose to include
numbers within the scope of our fingerspelling recognition
system.

We construct our phrase set with a variety of domains:
MacKenzie phrases, URLs, addresses, phone numbers, and
names. See Figure 2 for examples from each of these cate-
gories.

First, we include the MacKenzie phrase set [33], a clas-
sic set of 500 phrases used to evaluate text entry systems.
These phrases are intended to be collected multiple times
by different signers, to serve as a closed vocabulary testbed
for sanity checking methods. The rest of the domains are
intended to be unique phrases.

Second, we include randomized URLs using URL parts
from a web crawl in April 2022. The crawled URLs were
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Monk 07
6.4%
Monk 06
2.1%
Monk 05
4.3%
Monk 04
14.4%

Monk 03
37.2%

Monk 02
35.6%

Figure 3. Monk Skin Tone Scale ratings for FSboard partic-
ipants, annotated by majority vote of three human raters trained
specifically for the skin tone task.

Androgynous
2.7%

Masculine
35.6%

Feminine
61.7%

Figure 4. Perceived gender presentation of FSboard partici-
pants, annotated by human raters. Note that this is not equivalent
to gender identity, because it is predicted from the videos rather
than self-identified.

broken into unique domain name parts and directory parts.
Gibberish parts were removed using a set of manual rules
and a simple two character Markov chain trained to rec-
ognize URLs a human might want to fingerspell [39]. Fi-
nally, URLs were randomly generated from the parts, some-
times including the protocol identifier (such as https://)
and sometimes removing the domain name entirely. Some
URLs suggest explicit content, which we release as a sepa-
rate collection of metadata to ensure they are not included
in the dataset/models trained on it by default.

Third, we include randomly constructed street addresses.
The street names were sampled from the US Census Bu-
reau’s 2019 TIGER release [12], filtered to remove repet-
itive, uncommon, and hard to fingerspell names (such as
roads that are named by number ”Co Rd 87” and ”Cr-
1601Q4”). Street numbers of 1 to 6 digits were ran-
domly generated with a heavy bias towards 4 digit num-
bers. Some addresses had their standard abbreviations ex-
panded (”Lane” for ”LN”, ”Road” for ”Rd”) while others
maintained the abbreviation.

Fourth, we include names randomly generated as com-
binations of the 1000 most common first and last names in
the United States.

Fifth, we include random phone numbers. These include
10 digit US numbers, with and without the ”+1”, and semi-
realistic non-US numbers. The non-US numbers were gen-
erated with a valid country code and realistic groupings, but
no effort was made to create correct lengths for the country
code used.

These categories are not exhaustive but form a solid basis
for creating and evaluating a practical fingerspelling system.
For future data collections, we suggest increasing the repre-
sentation of symbols and diversity of formats to avoid over-
fitting. More care could also be taken around elements that
should perhaps be explicitly controllable in text entry even
if they are less salient in naturalistic fingerspelling, such as
whether/how to represent spaces and capitalization.

3.2. Data Collection

The Deaf Professional Arts Network (DPAN) recruited a
pool of Deaf signers who use ASL as their primary language
to participate in the data collection, of whom 147 completed
the task. DPAN shipped loaner Pixel 4A smartphones to
them with a data collection app installed, based on the open
source Record These Hands platform [24, 48].

The app showed a phrase as text. The participant would
touch an on-screen button to begin the phrase, then finger-
spell the phrase (with the other hand), and finally press an-
other button to advance to the next phrase. There was also
a button to be pressed if a mistake was made in finger-
spelling the phrase. For most participants, this button did
not work properly, leading to issues in data cleanup. A sin-
gle video was recorded for the entire session with button
presses merely recording a timestamp.

The participants were asked to record videos in various
settings and circumstances, leading to many different views
and backgrounds. Some people wear masks; sometimes the
face or portions of the hands are out of frame; sometimes
the field of view is at a strange angle recording videos from
below. Many participants opted to place the phone down in
some way leading to a large variability in distance to par-
ticipant, motions required for button presses, and timing
between button press and the beginning or end of finger-
spelling.

3.3. Data Cleanup

Due to bugs in the data collection app and some user errors,
the timespans recorded above frequently did not capture
the actual phrase. In order to generate reasonable clips we
used a bootstrapping method based on our baseline ByT5
model, described in Section 4. First the model was trained
on a large corpus of YouTube videos with captions. Next,
five models were finetuned to transcribe folds of the nois-
ily bounded fingerspelling data. (Each fold was trained on
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4/5 of the data and transcribed the remaining 1/5.) Since
evaluation bias was irrelevant, the dataset splits were per-
formed at the clip level such that every participant was in
every split. Each model was then used to predict text for the
remaining 1/5th that it had not yet seen. Where the model
agreed with the clip boundaries and content, the clip was la-
beled as clean, otherwise the clip was labeled as noisy. The
whole process was repeated two more times (starting each
time with a fresh model) using only the clean clips from
the previous round. A significant amount of manual editing
and custom rules tailored to each participant were then used
to further clean the clips. There are still some issues with
the clip boundaries in the dataset, and it would benefit from
further annotation.

3.4. Dataset Statistics
We divide FSboard into train, validation, and test splits with
unique signers in each split (117, 15, and 15 signers respec-
tively) and no overlap of phrases between splits.2

See Figure 5 for statistics about FSboard (and its splits)
in comparison to prior fingerspelling recognition datasets.
At 3.2M characters in phrase length and 266 hours in video
duration, FSboard is more than 10x larger than ChicagoF-
SWild+, the largest prior fingerspelling recognition dataset.
The number of sequences in FSboard is only about 3x that
of ChicagoFS, reflecting that the average sequence length in
FSboard (21.2 characters) is much longer than prior works
(5.5 in ChicagoFSWild+) due to the domain. The number of
unique signers is also lower (147 vs. 260), since FSboard’s
data is created from new participants rather than scraped
from the web like ChicagoFSWild(+). FSboard is unique
for fingerspelling datasets in that it is recorded from a one-
handed smartphone perspective, like PopSign [50] does for
isolated sign classification.

We used trained human annotators to give more visibil-
ity into FSboard’s demographic fairness: see Figure 3 for
Monk Skin Tone Scale [36] ratings and Figure 4 for clas-
sifications of perceived gender presentation. The dataset
has a good amount of variation in skin tone but lacks the
lightest and darkest ends of the scale. It is approximately
as diverse as OpenASL [49] (though the classification sys-
tem is different), and much more diverse than YouTube-
SL-25 [51]. Masculine presentation is underrepresented in
FSboard, with only 35.6% of signers. This statistic stands
opposite ChicagoFSWild+ [6], which underrepresents fem-
inine presentation to about the same degree; OpenASL and
YouTube-SL-25 are essentially at parity.

2Due to a bug in the data collection app, sometimes up to 3 signers were
prompted to fingerspell the same phrase when we intended to keep the
phrases unique. We discarded some data in order to create splits without
overlap in signers or phrases. The signers in each split were chosen so as
to minimize the amount of data which needed to be discarded in order to
keep each phrase only in one split. This resulted in a 29% reduction in the
number of phrases in the non-MacKenzie portion of FSboard.

4. Baselines

We provide two sets of baselines, using trained models and
human raters respectively. We report character error rate
(CER), implemented as length-normalized Levenshtein dis-
tance [31] using TensorFlow’s implementation [3], as well
as top-1 accuracy (i.e., the fraction of examples that are
transcribed perfectly).

4.1. Model Baselines
We build our model baselines on ByT5 [55], a character-
level encoder-decoder language model in the T5 fam-
ily [45]. Following the YouTube-ASL baselines [54], we
linearly project 85 3D MediaPipe Holistic [18, 32] land-
marks into the encoder, with one soft token for each frame
of input. Unlike YouTube-ASL’s baselines, we feed the in-
put frames in at full (30 Hz) frame rate by default, rather
than half; we use up to 256 frames of input and 256 charac-
ters of output and decode greedily with a beam size of 5. We
train each run using 32 TPUv3 with a batch size of 64 and
Adafactor optimizer with base learning rate 0.001 for up to
200k steps per run (or convergence), which takes up to 16
hours. We select checkpoints based on CER on the vali-
dation set. In practice, the sampling-based metrics plateau
without apparent overfitting, so checkpoint selection is not
especially sensitive.

See Figure 6 for a full table of quantitative results; see
Figure 7 for a qualitative sample of outputs. Our baseline
achieves 11.1% CER and 52.9% top-1 accuracy on the FS-
board test set. This baseline surpasses the best score (16.4%
CER) set in a Kaggle competition that we hosted based on
FSboard [5], though the participants were limited in terms
of model size and runtime. See the final leaderboard for
descriptions of many more baseline methods. The main dif-
ference is that, as far as we can tell, the top submissions
did not use pretrained language models but rather trained
models with new, custom architectures on FSboard only.

Our baseline is also substantially better than the 37.7%
CER achieved by ChicagoFSWild+’s baselines [6].3 Re-
sults obviously cannot be directly compared across test sets
in different domains, but it speaks to a combination of our
dataset’s increased size and choice of domain (including the
use of new footage from high-quality selfie cameras, rather
than crops of potentially low-resolution web videos). Our
baseline results are even better than ChicagoFSWild(+)’s
references for human performance at 17.3% (Wild) and
13.9% (Wild+), respectively. This result is because, as they
note, the datasets are mined as clips within longer sign-
ing videos, and the ground truth annotators have access to
broader context but the recognizer being tested does not.
While semantic context helps to decode fingerspelling in

3We are unable to evaluate our own models on ChicagoFSWild+ due to
licensing.
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name lang # seqs # chars # hrs # signers source

ChicagoFSVid [30] ASL 4K 21K <1 4 Lab
ChicagoFSWild [7] ASL 7K 38K 2 160 Web
ChicagoFSWild+ [6] ASL 55K 0.3M 14 260 Web

FSboard (ours)

ASL

151K 3.2M 266 147

Smartphonetrain 126K 2.8M 224 117
validation 12K 0.2M 19 15
test 13K 0.2M 23 15

Figure 5. Summary statistics for fingerspelling recognition datasets.

general, the problem is complicated by signers who sys-
tematically fingerspell faster and more sloppily when li-
censed by the discourse context [42]; to some degree at-
tempting to transcribe isolated fingerspelled subclips may
be doomed [52]. We sidestepped this issue by eliciting new
data in the same (isolated) context as the desired task, rather
than using clips from preexisting longform data.

We ablate several factors that contribute to our baseline’s
performance:

Pretraining. Finetuning from the pretrained ByT5 check-
point rather than the randomly initialized architecture
makes a massive difference in ultimate performance (11.1%
vs. 33.8% CER), and also gives much faster convergence
(most of the way by 30k steps, vs. at least 200k).

Model size. We try scaling from ByT5 Small (300M) to
ByT5 Base (580M), but quality decreases. We assume that
this dataset is not large enough to warrant the extra mod-
eling capacity, and the model overfits to the target distribu-
tion too easily. Models even smaller than ByT5 Small might
perform better, but it is the smallest available model in its
family.

Frame rate. In practice, MediaPipe Holistic is the perfor-
mance bottleneck for running sign language applications on
device, especially for devices that are not quite cutting edge.
We ablate frame rate to show that—as expected—quality
degrades monotonically with reduced frame rate, but 15 Hz
still performs pretty well (11.1% vs. 11.8% CER).

Holistic components. Likewise, we can improve on-
device performance by removing some of the component
models of MediaPipe Holistic (which consists of Hands,
Pose, and Face). Unlike other aspects of sign language, the
meaning of fingerspelling can be read purely from the shape
of the hands, which makes this test more principled than it
would be in other contexts. Removing the face causes slight
degradation (11.1% to 12.0% CER), presumably due to the

Model CER (↓) Top-1 Accuracy (↑)

Baseline 11.1 52.9

Pretrained (11.1) (52.9)
Scratch 33.8 17.9

ByT5 Small (11.1) (52.9)
ByT5 Base 13.3 49.1

30 Hz (11.1) (52.9)
30/2 Hz 11.8 51.8
30/3 Hz 13.4 48.2
30/4 Hz 14.6 45.1
30/6 Hz 20.0 33.4
30/8 Hz 27.1 22.2
30/16 Hz 64.0 0.9
30/32 Hz 88.7 0.0

Holistic (11.1) (52.9)
–Face 12.0 50.6
–Face –Pose 12.5 49.7

Figure 6. Character error rate (CER, ↓) and top-1 accuracy
(↑) for FSboard fingerspelling recognition model baselines. We
provide several ablations with respect to our best-performing base-
line (which uses 30 Hz MediaPipe Holistic (Hands+Pose+Face)
landmarks finetuned into ByT5 Small): the effect of using pre-
trained language knowledge vs. training the architecture from
scratch on FSboard only, building off ByT5 Small (300M) vs.
Base (580M), reducing frame rates, and removing Holistic com-
ponents.

loss of lipreading cues (which different signers use to vary-
ing extents), and removing pose has seemingly no effect. It
is possible that this gap could grow with more data, if FS-
board is not large enough to learn the relevant features.

4.2. Human Baselines
In order to quantify how much room remains for improve-
ment on FSboard given participant fingerspelling errors,
data cleaning errors, and inherent ambiguities in the video
recordings, we also provide a human baseline for the finger-
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Target Prediction

Random

hubert avalos elbert avalos
135-433-9049 135-433-9049
870055 sunset creek court 870055 sunset creek court
+43-795-19-03-4208 +43-795-19-03-4208
www.rehanfyzio.sk www.rohanfyzio.sk
a131003/iandrade82 a131003/iandrade82
eugene or eugene or
331 super chief 331 super chief
nashville tennessee nashvelle tenssee
/passeig de maragall /passigo-de-marsgoll
https://www.rauschenbach.de https://www.rauschenbach.de
5225 everette mcclerran 25225 everett mecclar road
+95-40-860-061-646 +95-40-860-061-647

Failures

sparks nv sparks.net
www.tttvw.com/lemoyne-pa www.tt26.com/lenoyne-p
2786 lily xing 78 william g
7806 skunk creek road 378606 skunk creek road
+54-5828-275-06 7158 twp 2303
newark new jersey newton jussey

Figure 7. Qualitative examples of our baseline’s predictions on the FSboard validation set. Note that these phrases, like all in the
validation set, are unseen in the training set. “Random” examples are sampled without cherrypicking, and “failures” are a selection of those
with the worst errors. For example, for “tttvw.com”, the fingershapes for “vw” and “two six” (not twenty six) look identical.

spelling recognition task. DPAN recruited 2 Deaf signers
whose primary communication is in ASL to annotate 100
random sequences from the FSboard test set. We described
the task with two variants: first, one pass over the video in
real-time at normal playback speed, typing a transcription
as they go; and second, unlimited playback/scrubbing of
the video at arbitrary speed, until they are satisfied with the
transcription. We provided examples of phrases from each
category in the train set in order to give a sense of the un-
conditional text distribution. Even so, the model may more
easily learn idiosyncrasies of the train text distribution, such
as particular formatting that is always used for phone num-
bers, so to make the comparison fairer we applied additional
canonicalization postprocessing steps to all text before scor-
ing: apply lowercase and remove whitespace, ‘+’, & ‘-’. We
scored using CER and top-1 accuracy as above.

See Figure 8 for quantitative results. Human 1 scores
a CER of 2.2% and top-1 accuracy of 74%, trouncing the
best model baseline, which scores 13.5% CER and 60%
top-1 accuracy on this particular set. (Human 2 scores sim-
ilarly to Human 1 but slightly worse.) The human one-
pass performance is markedly worse, with a best of 22.4%
CER and 19% top-1 accuracy. That is to say, the best
baseline model performs between a human interpreting the
content in real time and a human with arbitrary replays of
the content. Qualitatively, this is especially pronounced on
phone numbers and URLs, where it is challenging to pro-

Participant CER (↓) Top-1 Acc (↑)

Model 13.5 60

Human 1 2.2 74
One pass 24.8 21

Human 2 3.8 72
One pass 22.4 19

Figure 8. Character error rate (CER, ↓) and top-1 accuracy (↑)
for FSboard fingerspelling recognition with two human raters,
compared to the best model baseline, on a random set of 100 test
sequences. For humans, we provide scores for both a) the first pass
watching the clip in real time and b) unlimited additional passes
with the ability to pause/replay at arbitrary speeds.

cess and remember/type the long, high-information density
sequences in real time. This provides an early example of
a use case where sign language technology could be mean-
ingfully more performant than humans rather than just more
economical.

5. Limitations

Beyond the intentional limitations in scope of the problem
(tackling American Sign Language fingerspelling recogni-
tion for a mobile keyboard use case), FSboard has a number
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of areas for improvement in both data and modeling.
Our phrase set is a mixture of several relatively narrow

domains, and even within those domains the phrases follow
some patterns due to the way we synthetically generated
them. An independent test set that is based on real queries,
rather than being constructed from the same synthetic gram-
mar as the training set (even if the phrases are unique) would
give a more robust understanding of the dataset/model’s
performance and inform future data collection efforts. We
have also observed some considerations specific to the mo-
bile keyboard application that were underexplored in our
collection because they are not typically important for fin-
gerspelling. One example is capitalization. Signers only
distinguish capital from lowercase letters in rare circum-
stances where it is contextually relevant, but capitalization
is more important for text entry and should be elicited inten-
tionally. Special characters and differences in punctuation
like hyphens and underscores are also important but rela-
tively rare/nonstandardized in signing generally.

In terms of modeling, while MediaPipe Holistic handles
the vision aspects of fingerspelling recognition in a way
that is performant on device, prior work has found limita-
tions in the accuracy of current pose models [37] (though
many of the failure modes relate to interaction between
body parts, which is less relevant for fingerspelling). Fu-
ture work should explore direct modeling of video input, as
in B. Shi and Livescu [6, 7], but for the mobile on-device
setting.

6. Conclusion

In this paper we introduced FSboard, the largest ASL fin-
gerspelling dataset to date by a factor of >10x. Informed
by a participatory approach that prioritizes real yet tractable
needs of Deaf/Hard of Hearing users, FSboard focuses nar-
rowly on a mobile text entry use case to enable signers to
fingerspell short phrases and pieces of information as an
analogue to faster text entry techniques (as gesture/swipe
keyboards are to two thumb typing on smartphones) as op-
posed to speech recognition (for which full sign recognition
would be the analogue). Our baseline achieves 11.1% CER
on FSboard’s test set (with unique phrases and signers) and
degrades minimally with compromises to frame rate and
body tracking that could help maintain real-time on-device
performance. We hope that these results (or those achieved
by future modeling work on the dataset) will prove high
enough quality to be useful in practical applications, and
serve as a stepping stone on the way to more generally ca-
pable sign language technology.

Ethics Statement

The signers who participated in the data collection for FS-
board were each paid approximately $300 for providing

1000 fingerspelled phrases (which typically required 8-12
hours) and consented to their videos being published in a
public dataset. Some participants were paid twice, once for
the MacKenzie phrase set and once for the addresses, phone
numbers, etc. phrase set. Our data collection procedure was
reviewed by the relevant approval processes of our institu-
tion.

DPAN is a non-profit Deaf media company whose em-
ployees’ primary language is ASL. They recruited and con-
sented the contributors to the dataset. While names are not
affiliated with any of the videos, it was clear in the consent
process that participants’ faces would be identifiable and
that the dataset would be public.

While we release the underlying data with faces un-
blurred because mouthing can be important for finger-
spelling recognition, we ask that dataset users blur the sign-
ers’ faces when including examples in publications (as we
do in this paper). Dataset users should not attempt to in-
fer the signers’ personal identities or use their likenesses to
generate and publish other content (deepfakes).

Given the sociohistorical context surrounding sign lan-
guage technology and perceptions of fingerspelling, it
is important to emphasize that fingerspelling recogni-
tion/transcription is not sign language translation. Finger-
spelling is an important part of ASL, but ultimately just a
part of the language. Please do not exaggerate the scope of
this dataset or task in any follow-up work.
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