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ABSTRACT 
Searching unfamiliar American Sign Language (ASL) words in a 
dictionary is challenging for learners, as it involves recalling signs 
from memory and providing specifc linguistic details. Fortunately, 
the emergence of sign-recognition technology will soon enable 
users to search by submitting a video of themselves performing 
the word. Although previous research has independently addressed 
algorithmic enhancements and design aspects of ASL dictionaries, 
there has been limited efort to integrate both. This paper presents 
the design of an end-to-end sign language dictionary system, incor-
porating design recommendations from recent human–computer 
interaction (HCI) research. Additionally, we share preliminary fnd-
ings from an interview-based user study with four ASL learners. 

CCS CONCEPTS 
• Human-centered computing → Accessibility systems and tools; 
• Information systems → Search interfaces. 
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1 INTRODUCTION AND RELATED WORK 
Over 70 million Deaf and hard of hearing (DHH) individuals world-
wide use sign languages, with American Sign Language (ASL) being 
used by approximately 500,000 people in the United States alone 
[12, 24, 25]. The growing interest in learning sign languages extends 
beyond the DHH community, as many hearing individuals, such as 
parents and teachers of DHH children, as well as students in ASL 
courses, are motivated to learn ASL to facilitate communication 
and inclusion [14–16, 30, 33]. 
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Traditional methods of searching for signs in sign language dic-
tionaries pose challenges due to the absence of a standardized writ-
ing system and the need to recall and specify various linguistic prop-
erties of signs [2, 6, 8, 21]. Recent advancements in search-by-video 
dictionary systems show promise by automatically analyzing sign 
videos for matches in dictionary collections [9, 10, 13, 22, 27, 28, 34]. 
However, challenges remain, including difculties in recognizing 
complex 3D signs from 2D video, issues related to lighting, camera 
motion, cluttered backgrounds, and the user’s signing accuracy 
[29, 34]. Consequently, search-by-video systems may not always 
provide the desired sign as the top result, requiring users to navigate 
through potentially lengthy result lists [34]. 

Recent HCI research has explored ASL learners’ interaction with 
Wizard-of-Oz (WOZ) prototype systems for ASL dictionary search, 
investigating factors that infuence user satisfaction, such as search 
result composition and presentation [1, 17–19]. While these studies 
have provided valuable insights into design space, interface op-
timization, and algorithm-independent design solutions, there is 
limited integration of these fndings with functioning recognition 
systems. Furthermore, there is a lack of user studies on video-based 
ASL dictionary systems utilizing state-of-the-art sign recognition 
technology. Understanding user behaviors related to system failures, 
adaptation to the recorder for better video input quality, communi-
cating system latency, and conveying result accuracy requires the 
use of end-to-end functioning systems. 

In our ongoing research, we are developing a video-based ASL 
dictionary system using state-of-the-art sign recognition technol-
ogy [4]. In this demo paper, we showcase the system’s design, 
drawing inspiration from recent HCI research on sign language 
dictionaries and other look-up systems [11, 19, 31]. Additionally, 
we present fndings from an initial interview-based study involving 
four ASL learners. 

2 SYSTEM DESIGN 

2.1 Recognition Model 
Although not the main focus of this paper, we briefy discuss the 
model we use as well as its training and testing to provide some con-
text for our later discussions on design choices and fndings from 
the user study. We chose to use the Transformer-based SPOTER [4] 
architecture and trained it on a custom subset of WLASL2000 [23]. 
Compared to earlier approaches for the task of sign language recog-
nition, which usually analyzed raw video data, SPOTER estimates 
and analyzes the poses of the signer. This step reduces the input data 
dimensionality, allowing for faster inference and better generaliza-
tion across diverse signers. SPOTER achieved the state-of-the-art 
top-1 accuracy on multiple sign language datasets [3]: 30.97% on 
ASLLVD Skeleton [26], 78.29% on WLASL100 [23], and 18.68% on 
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Figure 1: Screenshot of the web application, open on the main dictionary interface page, with a prediction based on an uploaded 
video recording. 

UWB-SL-Wild [5]. Each of these datasets examines diferent capa-
bilities of the model: ASSLVD requires that the model learns from 
a small number of examples, WLASL100 requires that the model 
learns from recordings whose setting and user demographics are 
largely variable, and UWB-SL-Wild requires that the model learns 
from in-the-wild dictionary data. Together, these datasets ensure 
versatility and robustness. 

2.2 Interface Design 
We designed a web application consisting of two primary web pages: 
(a) the main dictionary interface and (b) the detailed results page. 
Besides expandable user instructions at the top, the main dictionary 
interface is divided into the input area (on the left) and the results 
area (on the right), as shown in Figure 1. 

To start using the application, the user needs to indicate whether 
they intend to use the webcam or upload a video fle as the input 
source in a drop-down menu. Once the input is uploaded, they hit 
the ‘Submit’ button, which starts the recognition process. After 
a few seconds, the closest-matching result is presented in the re-
sult card on the right. Following prior HCI research on individual 
snippet design, we implemented various interface elements. These 
include an auto-playing video result that loops, a concise English 
gloss, and easily interpretable linguistic features [7, 20]. The linguis-
tic meta-data with the result snippet helps users quickly browse 
the dictionary’s prediction and verify that the critical attributes of 
the results match their desired sign. In a post-query fltering step 
(on the detailed analysis page), these annotations could be used 
to inform fltering choices, which has been shown to boost user 

satisfaction, confdence, and performance when searching for an 
unfamiliar sign [7, 20]. 

The model’s confdence in this prediction is shown in the top 
right of the card. While the model yields percentual results for 
each sign in its vocabulary, the application converts these digits 
into confdence labels (66-100% to ‘Probably’, 33-66% to ‘Possibly’, 
and 0-33% to ‘Unlikely’). We set the confdence label thresholds 
based on our observations of the model behavior in three common 
scenarios. The model is usually accurate in predicting one sign 
with high confdence. If the model gives the same high score to two 
signs, it usually means that the signs are alike, and either one could 
be right. If the confdence score is close to zero, the prediction is 
unlikely to be correct. 

Unlike prior video-based ASL dictionary systems and WOZ pro-
totypes, we opted to display only the top prediction in the main 
interface, benefting from the signifcant improvements in video-
based search accuracy. This approach enhances the user experience 
and aligns with the tendency of most online dictionary users to 
prioritize the primary prediction [11, 31, 32]. A list of runner-up 
predictions is presented in a detailed analysis. The user may expand 
the prediction and see alternative signs by hitting the ‘More results’ 
button, which takes them to the detailed results page shown in Fig-
ure 2. This list is ordered by the model’s prediction confdence. The 
individual cards present the same information as the top prediction 
on the main results page. The linguistic meta-data are flterable us-
ing three drop-down menus and a specialized handshape selection 
modal, with the available handshapes displayed visually, as shown 
in Figure 3 [20]. The user could reset flters or return to the main 
dictionary interface using the buttons on the top right. 
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Figure 2: Screenshot of the web application, open on the detailed results page, with some flters selected and the top prediction 
visible. 

3 ASL LEARNERS’ FEEDBACK 

3.1 Participants and Study Design 
Participants for the study were recruited by emailing an advertise-
ment to students enrolled in introductory and intermediate-level 
ASL courses. The screening questions asked about their current 
or past enrollment in introductory or intermediate ASL courses. 
Four participants were recruited: P1 (23-year-old female, started 
learning ASL in 2019, took 8 classes), P2 (22-year-old male, started 
learning ASL in 2019, took 5 courses), P3 (19-year-old male, started 
learning ASL in 2021, took 2 courses), and P4 (38-year-old female, 
started ASL in 2018, took 1 course). None of the participants had 
any DHH family members. Participants signed an IRB-approved 
consent form before the start of the study and were paid $40 for 
participation. 

Participants provided feedback on the system design through 
a structured interview. Prior to the interview, we shared our ASL 
dictionary and a list of signs for them to try performing. The list 
included a subset of non-trivial signs that the model was trained 
on (see Appendix A). Additionally, we provided videos of these 
signs in a folder for reference. During the interview, we discussed 
their experience using ASL dictionaries and how ours difered. We 
gathered feedback on the recorder, system latency, individual result 
snippets, detailed analysis, and how result confdence was conveyed. 
We also inquired about their perception of system accuracy and 
their behavior when the system failed to provide the correct result. 

The interviews had an average duration of 35 minutes and were 
recorded and transcribed. Instead of conducting a formal, thematic 

analysis of the interview responses, we present participants’ com-
ments on various aspects of the system, which provide insights for 
future research and design endeavors. 

3.2 Initial Findings 
All four participants expressed interest in using our video-based 
dictionary system. P1 stated, “I believe... I would make regular use 
of it, as many individuals in my class already engage in recording 
themselves and sharing it with multiple people to determine the un-
derstanding of certain signs.” Participants mentioned employing 
such a system “after having a signed conversation with someone” 
(P2), “while watching signed videos” (P3), and “during homework for 
courses” (P1, P4). Two participants indicated their willingness to 
use the system even with its current level of accuracy, while the 
other two expressed a desire for improved accuracy. P2, for instance, 
stated: “To be honest, I might actually end up using something like 
this in its current state, because I feel like in the detailed analysis page, 
you can really get what you’d like.” P1, who desired recognition 
improvements, said that “A lot of times [the system] would only 
pick up on one aspect, like only the hand shape, or only the area of 
space... I think it also may have had trouble with, like, particular hand 
shapes, I know, like AFRICA.” Participants also reported accuracy 
percentages ranging from 25% (P1) to 75% (P2) for the top result. 

All participants liked the recorder and input recorded video 
functionalities. P2 recommended using ‘Play’ and ‘Pause’ buttons 
instead of icons for the recorder. Interestingly, participants men-
tioned diverse behaviors when they could not fnd the sign. For 
example, “repeating it”(P1, P3, P4), “performing it face on” (P1), “per-
forming it at three quarter angle” (P1), “shifting from one side to 
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Figure 3: Screenshot of the handshape flter selection modal, expandable from the web application’s detailed results page. 

another” (P1, P3), “performing it in front of a dark background of 
chair” (P2), and “performing it on their shirt” (P2). 

Participants had varying suggestions regarding the presentation 
of results. P2 and P3 preferred a single overall result on the frst 
page, with a detailed analysis available upon request. P2 specifcally 
appreciated the simplicity of having one result and a separate in-
terface for detailed analysis, stating, “I would prefer to have the one 
result and separate detailed analysis because then when you would, it 
would sort of just be one thing... and then click onto another screen to 
access all those other really useful things, like your flters... [Filters] 
do a really great job at narrowing down certain stuf... you can take 
all of the diferent classifers and tags that are on each image and just 
immediately get rid of a whole bunch of other results.” P1 mentioned 
that given the current accuracy, they would like to see four results 
on the frst page and have a detailed analysis for the remaining 
results. 

Participants provided suggestions regarding the display of sys-
tem latency. P1 appreciated the current design, which included 
an estimated processing time. In contrast, P2 suggested using a 
more prominent UI element with indications of the uploading or 
processing status, stating, “a loading wheel or, like some sort of larger 
UI element to, like, tell you that, you know, it’s either uploading or 
processing”. P4 also mentioned that it could be helpful to inform 
users if the processing time is longer than usual. 

Participants had mixed opinions regarding the presentation of 
confdence levels. While two participants expressed occasional dis-
agreement with the confdence levels, they still liked the overall 
presentation. P1 shared an example stating, “For one video, it said 
unlikely, and that was the correct answer.” Participant 2 said, “And 

the breakdown of what it thought was... confdent versus possible 
versus unlikely. I thought that was pretty helpful.” 

4 CONCLUSION 
We implemented a novel end-to-end video-based ASL dictionary 
that integrates the latest recognition approach and incorporates 
design recommendations from HCI research. Through a small user 
study with four ASL learners, we gained insights into usage contexts 
and system performance perceptions and received valuable design 
suggestions. We plan to conduct a demo of our system to further 
understand user behaviors and gather feedback on design elements. 
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