Searching unfamiliar American Sign Language (ASL) words in a dictionary is challenging for learners, as it involves recalling signs from memory and providing specific linguistic details. Fortunately, the emergence of sign-recognition technology will soon enable users to search by submitting a video of themselves performing the word. Although previous research has independently addressed algorithmic enhancements and design aspects of ASL dictionaries, there has been limited effort to integrate both. This paper presents the design of an end-to-end sign language dictionary system, incorporating design recommendations from recent human–computer interaction (HCI) research. Additionally, we share preliminary findings from an interview-based user study with four ASL learners.